rotor cryptosystem - definizione. Che cos'è rotor cryptosystem
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

Cosa (chi) è rotor cryptosystem - definizione

Damgaard-Jurik cryptosystem; Damgaard–Jurik cryptosystem; Damgård-Jurik cryptosystem; Damgard–Jurik cryptosystem; Damgard-Jurik cryptosystem

rotor blade         
  • [[Boeing CH-47 Chinook]]
  • MD Helicopters 520N NOTAR
  • A [[Bell 205]] with a semirigid rotor and stabilizer bar
  • The first autogyro to fly successfully in 1923, invented by [[Juan de la Cierva]].
  • [[de Bothezat helicopter]], 1923 photo
  • Diagram of fully articulated main rotor head
  • Kopp–Etchells effect
  • Fenestron on an EC 120B
  • ''Antitorque'': torque effect on a helicopter
  • [[Kamov Ka-50]] of the Russian Air Force, with coaxial rotors
  •  A semirigid rotor head with a flybar
ROTARY WINGS AND CONTROL SYSTEM THAT GENERATES THE LIFT AND THRUST FOR A HELICOPTER
Articulated rotor; Main rotor; Helicopter Rotor; Helicopter rotor blade; Drag hinge; Drag hinges; Lead-lag hinge; Rotor blade; Counter-rotating rotor; Stabilizer bar (helicopter); Teetering rotor; Rotor system; Rotor blades
see rotor
Helicopter rotor         
  • [[Boeing CH-47 Chinook]]
  • MD Helicopters 520N NOTAR
  • A [[Bell 205]] with a semirigid rotor and stabilizer bar
  • The first autogyro to fly successfully in 1923, invented by [[Juan de la Cierva]].
  • [[de Bothezat helicopter]], 1923 photo
  • Diagram of fully articulated main rotor head
  • Kopp–Etchells effect
  • Fenestron on an EC 120B
  • ''Antitorque'': torque effect on a helicopter
  • [[Kamov Ka-50]] of the Russian Air Force, with coaxial rotors
  •  A semirigid rotor head with a flybar
ROTARY WINGS AND CONTROL SYSTEM THAT GENERATES THE LIFT AND THRUST FOR A HELICOPTER
Articulated rotor; Main rotor; Helicopter Rotor; Helicopter rotor blade; Drag hinge; Drag hinges; Lead-lag hinge; Rotor blade; Counter-rotating rotor; Stabilizer bar (helicopter); Teetering rotor; Rotor system; Rotor blades
A helicopter main rotor or rotor system is the combination of several rotary wings (rotor blades) with a control system, that generates the aerodynamic lift force that supports the weight of the helicopter, and the thrust that counteracts aerodynamic drag in forward flight. Each main rotor is mounted on a vertical mast over the top of the helicopter, as opposed to a helicopter tail rotor, which connects through a combination of drive shaft(s) and gearboxes along the tail boom.
Goldwasser–Micali cryptosystem         
ASYMMETRIC KEY ENCRYPTION ALGORITHM
Goldwasser-Micali; Goldwasser-Micali encryption; Goldwasser-Micali cryptosystem; Goldwasser-Micali encryption scheme
The Goldwasser–Micali (GM) cryptosystem is an asymmetric key encryption algorithm developed by Shafi Goldwasser and Silvio Micali in 1982. GM has the distinction of being the first probabilistic public-key encryption scheme which is provably secure under standard cryptographic assumptions.

Wikipedia

Damgård–Jurik cryptosystem

The Damgård–Jurik cryptosystem is a generalization of the Paillier cryptosystem. It uses computations modulo n s + 1 {\displaystyle n^{s+1}} where n {\displaystyle n} is an RSA modulus and s {\displaystyle s} a (positive) natural number. Paillier's scheme is the special case with s = 1 {\displaystyle s=1} . The order φ ( n s + 1 ) {\displaystyle \varphi (n^{s+1})} (Euler's totient function) of Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be divided by n s {\displaystyle n^{s}} . Moreover, Z n s + 1 {\displaystyle Z_{n^{s+1}}^{*}} can be written as the direct product of G × H {\displaystyle G\times H} . G {\displaystyle G} is cyclic and of order n s {\displaystyle n^{s}} , while H {\displaystyle H} is isomorphic to Z n {\displaystyle Z_{n}^{*}} . For encryption, the message is transformed into the corresponding coset of the factor group G × H / H {\displaystyle G\times H/H} and the security of the scheme relies on the difficulty of distinguishing random elements in different cosets of H {\displaystyle H} . It is semantically secure if it is hard to decide if two given elements are in the same coset. Like Paillier, the security of Damgård–Jurik can be proven under the decisional composite residuosity assumption.